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No Two Parts are Alike in Software. . .

Software entities are more complex for their size than perhaps
any other human construct because no two parts are alike (at
least above the statement level). If they are, we make the two
similar parts into a subroutine — open or closed. In this respect,
software systems differ profoundly from computers, buildings, or
automobiles, where repeated elements abound.

– by Frederick P. Brooks, Jr: No Silver Bullet: Essence and Accidents of
Software Engineering



Software Redundancy

copy&paste is common habit:

number 1 on Beck and Fowler’s “Stink Parade of Bad Smells”

reported redundancy:
% system lines citation

19 X Windows ≥ 30 Baker (1995)
28 3 subs. of process-control sys. ? Baxter et al. (1998)
59 payroll system ≥ 10 Ducasse et al. (1999)

clone sizes larger than 25 are rare (Baxter et al., 1998)

Open Issues

How much do these numbers depend upon the quality of the clone
detector?

Are these systems representative?

Do open-source systems have fewer clones?



A Historical Review on Software Clones Research
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Type-1 Clone

1 PRIVATE UINT16 t y p l e n g t h ( a t n t y p e ∗node )
2 { i f ( node−>tag == REF )
3 node = node−>t r e e . r e f t y p e ;
4
5 sw i t c h ( node−>tag )
6 {
7 ca se INTEGER : r e t u r n 4 ;
8 ca se REAL : r e t u r n 8 ;
9 ca se BOOLEAN : r e t u r n 1 ;

10 ca se STRING : r e t u r n 4 ;
11 ca se ARRAY :
12 r e t u r n t y p l e n g t h ( node−>t r e e . a r r a y . t ype )
13 ∗ ( node−>t r e e . a r r a y . upb
14 − node−>t r e e . a r r a y . lwb +1);
15 ca se REF : r e t u r n 4 ;
16 d e f a u l t :
17 l o g e r r o r (ERR FATAL , SYSTEM ERROR,
18 E ILLEGAL TAG , ” type ” , 0 ) ;
19 }
20 r e t u r n 0 ;
21 }

1 PRIVATE UINT16 t y p l e n g t h ( a t n t y p e ∗node )
2 { i f ( node−>tag == REF )
3 node = node−>t r e e . r e f t y p e ;
4
5 sw i t c h ( node−>tag )
6 {
7 ca se INTEGER : r e t u r n 4 ;
8 ca se REAL : r e t u r n 8 ;
9 ca se BOOLEAN : r e t u r n 1 ;

10 ca se STRING : r e t u r n 4 ;
11 ca se ARRAY :
12 r e t u r n t y p l e n g t h ( node−>t r e e . a r r a y . t ype )
13 ∗ ( node−>t r e e . a r r a y . upb
14 − node−>t r e e . a r r a y . lwb +1);
15 ca se REF : r e t u r n 4 ;
16 d e f a u l t :
17 l o g e r r o r (ERR FATAL , SYSTEM ERROR,
18 E ILLEGAL TAG , ” type ” , 0 ) ;
19 }
20 r e t u r n 0 ;
21 }



Type-2 Clone

1 r e t u r n TRUE;
2 }
3
4 /∗ r ead operand #0 ( a lways p r e s e n t ) ∗/
5

6 thisOp−>op [ 0 ] . t ype

7 = va a r g ( ap , a3 a rgument type ) ;
8

9 i f ( ( th isOp−>op [ 0 ] . t ype == oCFLOAT ) | |

10 ( th isOp−>op [ 0 ] . t ype & 16)) // indexed

11 {
12 thisOp−>op [ 0 ] . v a l . f [0 ]= va a r g ( ap , INT32 ) ;

13 thisOp−>op [ 0 ] . v a l . f [1 ]= va a r g ( ap , INT32 ) ;

14 }
15 e l s e

16 thisOp−>op [ 0 ] . v a l . l = va a r g ( ap , INT32 ) ;

17
18 /∗ r ead operand #1 ( somet imes p r e s e n t ) ∗/
19
20 i f ( ( s t a t t y p e != A3 GOTO ) &&

1 /∗ r ead operand #2 ( b i n a r y op on l y ) ∗/
2 i f ( ( s t a t t y p e == A3 BINARY OP) | |
3 ( s t a t t y p e == A3 COND) )
4 {
5 thisOp−>op [ 2 ] . t ype

6 = va a r g ( ap , a3 a rgument type ) ;
7

8 i f ( ( th isOp−>op [ 2 ] . t ype == oCFLOAT ) | |

9 ( th isOp−>op [ 2 ] . t ype & 16))

10 {
11 thisOp−>op [ 2 ] . v a l . f [0 ]= va a r g ( ap , INT32 ) ;

12 thisOp−>op [ 2 ] . v a l . f [1 ]= va a r g ( ap , INT32 ) ;

13 }
14 e l s e

15 thisOp−>op [ 2 ] . v a l . l = va a r g ( ap , INT32 ) ;

16 }
17 e l s e
18 thisOp−>op [ 2 ] . t ype = oNONE;



Type-3 Clone

1 s t a t i c vo i d r32 ( i n t arg , i n t ap ) {
2 /∗ r ead operand #0 ( a lways p r e s e n t )∗/
3 thisOp−>op [ 0 ] . t ype = 0 ;

4

5 i f ( ( th isOp−>op [ 0 ] . t ype == oCFLOAT)

6 | | ( th isOp−>op [ 0 ] . t ype & 16) ) // indexed

7 {
8 thisOp−>op [ 0 ] . v a l . f [0 ]= arg ;

9 th isOp−>op [ 0 ] . v a l . f [1 ]= arg ;

10 }
11 e l s e

12 th isOp−>op [ 0 ] . v a l . l = ap ;

13 }
14 }

1 s t a t i c vo i d r64 ( i n t arg , i n t ap , ) {
2 /∗ r ead operand #2 ( b i n a r y op on l y )∗/
3 thisOp−>op [ 2 ] . t ype = 0 ;

4

5 i f ( ( th isOp−>op [ 2 ] . t ype == oCFLOAT)

6 | | ( th isOp−>op [ 2 ] . t ype & 32 ) )

7 {
8 thisOp−>op [ 2 ] . v a l . f [0 ]= arg ;

9 th isOp−>op [ 2 ] . v a l . f [1 ]= arg ;

10 }
11 e l s e

12 th isOp−>op [ 2 ] . v a l . l = ap ;

13 thisOp-¿op[2].val.r = ap & 32;

14 }
15 }



Is There a Consensus on a Definition of a Clone?

Exploratory study by Walenstein et al. (2003):

function clones of Bellon Benchmark investigated

four raters

rater instructions required clones to be worthwhile for refactoring

→ little consensus

Discussion at Dagstuhl seminar on software clones (Kapser et al., 2006)

segments of code were presented to clone researchers

clone researchers debated whether the segments are clones

→ little consensus

→ people tend to use task-oriented definitions



Is There a Consensus on a Definition of a Clone?

Own study (Mende et al., 2009):

function clones of Linux driver subsystem for wireless LAN
nine raters
rater instructions in software product lines context: function variants
that are worthwhile for refactoring

→ sufficient agreement
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Open Issues

What are suitable definitions of similarity for which purpose?

Is there a theory of program redundancy similar to normal forms in
databases?

What categorizations beyond type 1/2/3 of clones make sense (e.g.,
syntax, semantics, origins, risks, etc.)?

What is the statistical distribution of clone types in real-world
programs?

Which strategies of removal and avoidance, risks of removal, potential
damages, root causes, and other factors are associated with these
categories?



How Can We Detect Clones?

Granularity

functions

statements

Comparison of . . .

text

identifiers

tokens

syntax trees

control/data
dependencies

Techniques used

textual diff

dotplot

data mining

suffix tree

tree matching

graph matching

latent semantic
indexing

metric vector
comparison

hashing



Textual Detection

Comparison of. . .

identifiers and comments (information retrieval)

latent semantic indexing (Marcus and Maletic, 2001)

text

string comparison using fingerprints (Johnson, 1993, 1994)
line-based comparison via dot plots (Ducasse et al., 1999; Rieger, 2005)

27
124

67
12

95
...

...

42

42

a a b x y a a b z ...



How Can We Detect Clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees for parameterized strings per line (Baker,
1995)
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How Can We Detect Clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees for parameterized strings per line (Baker,
1995)
type-3: concatenation of type-1/2 clones with gaps (Baker, 1995)
per token plus normalization of token stream (Kamiya et al., 2002)
lexical clones fully contained in syntactic unit:

lexical post-processing (Higo et al., 2002)
lexical pre-processing (Synytskyy et al., 2003; Cordy et al., 2004)



Incremental Token-Based Detection
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Evaluation (Göde and Koschke, 2009)
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How Can We Detect Clones?

Comparison of . . .

metrics (Mayrand et al., 1996; Kontogiannis, 1997)

statements via data mining (Wahler et al., 2004; Li et al., 2004)



How Can We Detect Clones?

Comparison of . . .

syntax trees

hashing plus tree matching (Baxter et al., 1998)
tree matching plus dynamic programming (for file comparison) (Yang,
1991)
suffix trees for serialized syntax trees (Koschke et al., 2006)
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How Can We Detect Clones?

Comparison of Program Dependency Graphs (PDG) (Komondoor and
Horwitz, 2001; Krinke, 2001)

r ead ( n ) ; r ead (m) ;
i = 1 ; s = 0 ;
p roduc t = 1 ; p = 1 ;
sum = 0 ; f o r ( j = 1 ; j <= m; j = j + 1) {
wh i l e ( i <= n) { s = s + i ;

p roduc t = produc t ∗ i ; p = p ∗ i ;
sum = sum + i ; }
i = i + 1 ; w r i t e ( s ) ;

} w r i t e ( p ) ;
w r i t e ( sum ) ;
w r i t e ( p roduc t ) ;

set−use

control influence

p := p ** 2product := product ** 2

entry

j := 1

write(p)

read(m)

j <= m

write(s) s := s * 2

j := j + 1
p := 2

s := 1entry

i := 1

write(product)

read(n)

i <= n

write(sum) sum := sum * 2

i := i + 1
product := 2

sum := 1



How do Clone Detectors Compare?

Quantitative comparison of clone detectors by Bellon and Koschke (2002;
2007) for 4 Java and 4 C systems of 850 KLOC in total

Baker Baxter Kamiya Krinke Merlo Rieger

Basis Token AST Token PDG Metric Text
Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + - + - - + + ?
RAM + - + + + + ?
Recall + - + - - +
Precision - + - - + -
Hidden 42 % 28 % 46 % 4 % 24 % 31 %

Later re-used and extended by Koschke et al. (2006)



Benchmarks

Open Issues

Limitations of current benchmarks

single oracle (until recently)

differences among different human raters for clone candidates
(Walenstein et al., 2003) when clones ought to be removed.

yes/no decision rather than degree of confidence

clones length measured as lines rather than tokens

insists on contiguous lines/tokens

clone pairs rather than clone classes

Benchmarking should become standard procedure of the community.
→ Bellon Benchmark is open source:
http://www.bauhaus-stuttgart.de/clones/
TBD: http://cloneval.sourceforge.net

http://www.bauhaus-stuttgart.de/clones/
http://cloneval.sourceforge.net


Why Do Clones Exist?

Ethnographic study by Kim et al. (2005):

Limitations of programming language designs may result in
unavoidable duplicates in a code.

Programmers often delay code restructuring until they have copied
and pasted several times.

Copy&paste dependencies often reflect important underlying design
decisions, such as crosscutting concerns.

Copied text is often reused as a template and is customized in the
pasted context.

Investigation of clones in large systems by Kapser and Godfrey (2006):
patterns of cloning:

forking

templating

customization



Open Issues

More empirical research needed. Other potential reasons:

insufficient information on global change impact

badly organized reuse process

questionable productivity measures (LOCs per day)

time pressure

educational deficiencies, ignorance, or shortsightedness

intellectual challenges (e.g., generics)

professionalism/end-user programming (e.g., HTML, Visual Basic)

development process, e.g., XP yields less clones? (Nickell and Smith,
2003)

organizational issues, e.g., distributed development organizations

→ fight the reasons, not just the symptoms



Beliefs About Effects of Cloning

Duplication is undesirable because of its well-known association
with bugs.

— Baker (1993)

In the long run the software grows in size and complexity and
requires more resources to maintain and enhance.

— Mayrand et al. (1996)

Detection and removal of such clones promises decreased
software maintenance costs of possibly the same magnitude.

— Baxter et al. (1998)



Beliefs About Effects of Cloning

During our case studies of large software systems, we found that
code cloning can often be used in a positive way.

— “Cloning considered harmful” considered harmful;
Kapser and Godfrey (2006)

In particular, refactoring may not always improve software with
respect to clones for two reasons. First, many code clones exist
in the system for only a short time; [. . . ] Second, many clones,
especially long-lived clones that have changed consistently with
other elements in the same group, are not easily refactorable due
to programming language limitations.

— Kim et al. (2005)



Beliefs in Beliefs About Effects of Cloning

Several recent studies contradict the common wisdom that
cloning constitutes a risky practice as found by Kim et al. (2005).
As shown in a paper by Kapser and Godfrey (2006), source code
clones are not necessarily to be considered harmful [. . . ]

— Aversano et al. (2007)



What Are the Effects of Cloning?

error rate

0−19 30−49 50−99 100−199 200−...

max. length of clones

– Monden et al. (2002)



What Are the Effects of Cloning?

Hypothesis by Chou et al. (2001):

If a function, file, or directory has one error, it is more likely that
is has others.

Additional observation in their study of Linux and OpenBSD:

can be observed most often when programmer ignorance of interface
or system rules combines with copy-and-paste

→ programmers believe that “working” code is correct code

→ copied code may be incorrect or placed into a context it was not
intended for



What Are the Effects of Cloning?

Faults due to type-2 clones with inconsistent renaming

— Li et al. (2006) for Linux kernel, FreeBSD, Apache, PostgreSQL.
Faults due to inconsistently changed type-3 clones (Juergens et al., 2009)



What Are the Effects of Cloning?

Effects on Changeability:

impact = percentage of co-changed methods

likelihood = frequency of method changes with clones
frequency of method changes

work = impact × likelihood

— Lozano and Wermelinger (2008)

→ no difference between cloned code and not cloned clone



Open Issues

More empirical research needed on relation of cloning to quality attributes
(defects, costs, performance, etc.).



How to Get Rid of Clones?

We know various techniques to remove clones:

automatic refactoring (Fanta and Rajlich, 1999)

functional abstraction (Komondoor and Horwitz, 2002)

macros (e.g., CloneDr by Semantic Designs)

design patterns (Balazinska et al., 1999, 2000)

generative programming (Jarzabek and Shubiao, 2003; Jarzabek and
Li, 2006)

Cordy (2003) argues that companies are afraid of the risks of removal.



How to Get Rid of Clones?

Open Issues

Empirical investigations of costs and benefits of clone removal are needed:

clone types and their relation to quality attributes

relevance ranking of clone types

suitable removal techniques with costs and risks

Tool support for removing type-3 clones?



How do Clones Evolve?

Cloning is common and steady practice in Linux kernel (Godfrey and
Tu, 2000, 2001; Antoniol et al., 2001, 2002)

Many code clones exist for only a short time (Kim et al., 2005)

Most type-1 clones live for a long time (Göde, 2009)

Many long-living clones that have changed consistently with other
elements in the same group cannot easily be avoided because of
limitations of the programming language (Kim et al., 2005)

Clones are changed consistently (Aversano et al., 2007)

Only half of the clones are changed consistently (Krinke, 2007)

Clones are more stable than non-cloned code (Krinke, 2008)



How do Clones Evolve?

Open Issues

How do clones evolve in industrial systems?

What does their evolution tell about the development organization
and process?

What affects cloning likelihood over time?

Why and how do programmers remove clones?

How we can track and manage clones over versions?

Can we use history information to improve clone detectors?



Summary of Own Research Results

Research surveys (Koschke, 2007, 2008b,a; Roy et al., 2009; Harder
and Koschke, 2008)

Clone detection for syntax trees in linear time (Koschke et al., 2006;
Falke et al., 2008)

Incremental clone detection (Göde and Koschke, 2009)

Tracing of clones across versions (Göde, 2009)

Learning algorithms for clone characteristics (Tiarks et al., 2009a,b)

Empirical classifications of type-3 clones (Tiarks et al., 2009a,b)

Empirical investigation of clone removal (Göde, 2010)



Final Quotes

Current software engineering tools have poor support for
identifying reusable code templates or maintaining them during
software evolution.

– Kim et al. (2005)

Cloning is a good strategy if you have the right tools in place.
Let programmers copy and adjust, and then let tools factor out
the differences with appropriate mechanisms.

– Ira Baxter, 2002



Further Reading and Resources

http://www.informatik.uni-bremen.de/st/lehredetails.
php?id=&lehre_id=44
Lecture on software reengineering (slides and video) including
techniques for clone detection

http://www.bauhaus-stuttgart.de
Bauhaus research project offering various clone detectors

http://www.bauhaus-stuttgart.de/clones/
Material on experiment to compare clone detectors

http://drops.dagstuhl.de/portals/index.php?semnr=06301
Dagstuhl seminar on clone detection, slides and proceedings

http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.bauhaus-stuttgart.de
http://www.bauhaus-stuttgart.de/clones/
http://drops.dagstuhl.de/portals/index.php?semnr=06301
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