
A State-of-the-Art Survey on Software Clones

Rainer Koschke
University of Bremen, Germany

First Indian Workshop on Reverse Engineering (IWRE)
Feb 25th , 2010, Mysore, India



No Two Parts are Alike in Software. . .

Software entities are more complex for their size than perhaps
any other human construct because no two parts are alike (at
least above the statement level). If they are, we make the two
similar parts into a subroutine — open or closed. In this respect,
software systems differ profoundly from computers, buildings, or
automobiles, where repeated elements abound.

– by Frederick P. Brooks, Jr: No Silver Bullet: Essence and Accidents of
Software Engineering



Software Redundancy

copy&paste is common habit:

number 1 on Beck and Fowler’s “Stink Parade of Bad Smells”

reported redundancy:
% system lines citation

19 X Windows ≥ 30 Baker (1995)
28 3 subs. of process-control sys. ? Baxter et al. (1998)
59 payroll system ≥ 10 Ducasse et al. (1999)

clone sizes larger than 25 are rare (Baxter et al., 1998)

Open Issues

How much do these numbers depend upon the quality of the clone
detector?

Are these systems representative?

Do open-source systems have fewer clones?



A Historical Review on Software Clones Research

t

1992
detection

1999
removal

2000
evolution

2001
effects

2002
evaluation

2005
reasons

IW
D
SC

’0
3

IW
D
SC

’0
2

IC
SM

’0
8

IW
SC

’0
9

IW
SC

’1
0

D
ag

st
uh

l 0
6



Type-1 Clone

1 PRIVATE UINT16 t y p l e n g t h ( a t n t y p e ∗node )
2 { i f ( node−>tag == REF )
3 node = node−>t r e e . r e f t y p e ;
4
5 sw i t c h ( node−>tag )
6 {
7 ca se INTEGER : r e t u r n 4 ;
8 ca se REAL : r e t u r n 8 ;
9 ca se BOOLEAN : r e t u r n 1 ;

10 ca se STRING : r e t u r n 4 ;
11 ca se ARRAY :
12 r e t u r n t y p l e n g t h ( node−>t r e e . a r r a y . t ype )
13 ∗ ( node−>t r e e . a r r a y . upb
14 − node−>t r e e . a r r a y . lwb +1);
15 ca se REF : r e t u r n 4 ;
16 d e f a u l t :
17 l o g e r r o r (ERR FATAL , SYSTEM ERROR,
18 E ILLEGAL TAG , ” type ” , 0 ) ;
19 }
20 r e t u r n 0 ;
21 }

1 PRIVATE UINT16 t y p l e n g t h ( a t n t y p e ∗node )
2 { i f ( node−>tag == REF )
3 node = node−>t r e e . r e f t y p e ;
4
5 sw i t c h ( node−>tag )
6 {
7 ca se INTEGER : r e t u r n 4 ;
8 ca se REAL : r e t u r n 8 ;
9 ca se BOOLEAN : r e t u r n 1 ;

10 ca se STRING : r e t u r n 4 ;
11 ca se ARRAY :
12 r e t u r n t y p l e n g t h ( node−>t r e e . a r r a y . t ype )
13 ∗ ( node−>t r e e . a r r a y . upb
14 − node−>t r e e . a r r a y . lwb +1);
15 ca se REF : r e t u r n 4 ;
16 d e f a u l t :
17 l o g e r r o r (ERR FATAL , SYSTEM ERROR,
18 E ILLEGAL TAG , ” type ” , 0 ) ;
19 }
20 r e t u r n 0 ;
21 }



Type-2 Clone

1 r e t u r n TRUE;
2 }
3
4 /∗ r ead operand #0 ( a lways p r e s e n t ) ∗/
5

6 thisOp−>op [ 0 ] . t ype

7 = va a r g ( ap , a3 a rgument type ) ;
8

9 i f ( ( th isOp−>op [ 0 ] . t ype == oCFLOAT ) | |

10 ( th isOp−>op [ 0 ] . t ype & 16)) // indexed

11 {
12 thisOp−>op [ 0 ] . v a l . f [0 ]= va a r g ( ap , INT32 ) ;

13 thisOp−>op [ 0 ] . v a l . f [1 ]= va a r g ( ap , INT32 ) ;

14 }
15 e l s e

16 thisOp−>op [ 0 ] . v a l . l = va a r g ( ap , INT32 ) ;

17
18 /∗ r ead operand #1 ( somet imes p r e s e n t ) ∗/
19
20 i f ( ( s t a t t y p e != A3 GOTO ) &&

1 /∗ r ead operand #2 ( b i n a r y op on l y ) ∗/
2 i f ( ( s t a t t y p e == A3 BINARY OP) | |
3 ( s t a t t y p e == A3 COND) )
4 {
5 thisOp−>op [ 2 ] . t ype

6 = va a r g ( ap , a3 a rgument type ) ;
7

8 i f ( ( th isOp−>op [ 2 ] . t ype == oCFLOAT ) | |

9 ( th isOp−>op [ 2 ] . t ype & 16))

10 {
11 thisOp−>op [ 2 ] . v a l . f [0 ]= va a r g ( ap , INT32 ) ;

12 thisOp−>op [ 2 ] . v a l . f [1 ]= va a r g ( ap , INT32 ) ;

13 }
14 e l s e

15 thisOp−>op [ 2 ] . v a l . l = va a r g ( ap , INT32 ) ;

16 }
17 e l s e
18 thisOp−>op [ 2 ] . t ype = oNONE;



Type-3 Clone

1 s t a t i c vo i d r32 ( i n t arg , i n t ap ) {
2 /∗ r ead operand #0 ( a lways p r e s e n t )∗/
3 thisOp−>op [ 0 ] . t ype = 0 ;

4

5 i f ( ( th isOp−>op [ 0 ] . t ype == oCFLOAT)

6 | | ( th isOp−>op [ 0 ] . t ype & 16) ) // indexed

7 {
8 thisOp−>op [ 0 ] . v a l . f [0 ]= arg ;

9 th isOp−>op [ 0 ] . v a l . f [1 ]= arg ;

10 }
11 e l s e

12 th isOp−>op [ 0 ] . v a l . l = ap ;

13 }
14 }

1 s t a t i c vo i d r64 ( i n t arg , i n t ap , ) {
2 /∗ r ead operand #2 ( b i n a r y op on l y )∗/
3 thisOp−>op [ 2 ] . t ype = 0 ;

4

5 i f ( ( th isOp−>op [ 2 ] . t ype == oCFLOAT)

6 | | ( th isOp−>op [ 2 ] . t ype & 32 ) )

7 {
8 thisOp−>op [ 2 ] . v a l . f [0 ]= arg ;

9 th isOp−>op [ 2 ] . v a l . f [1 ]= arg ;

10 }
11 e l s e

12 th isOp−>op [ 2 ] . v a l . l = ap ;

13 thisOp-¿op[2].val.r = ap & 32;

14 }
15 }



Is There a Consensus on a Definition of a Clone?

Exploratory study by Walenstein et al. (2003):

function clones of Bellon Benchmark investigated

four raters

rater instructions required clones to be worthwhile for refactoring

→ little consensus

Discussion at Dagstuhl seminar on software clones (Kapser et al., 2006)

segments of code were presented to clone researchers

clone researchers debated whether the segments are clones

→ little consensus

→ people tend to use task-oriented definitions



Is There a Consensus on a Definition of a Clone?

Own study (Mende et al., 2009):

function clones of Linux driver subsystem for wireless LAN
nine raters
rater instructions in software product lines context: function variants
that are worthwhile for refactoring

→ sufficient agreement

0.4 0.3 0.2 0.1 0.0

●

R−2

●

R−7

●

●

R−1

●
R−5

R−9

●

R−8

●

R−6

●
R−3

R−4



Open Issues

What are suitable definitions of similarity for which purpose?

Is there a theory of program redundancy similar to normal forms in
databases?

What categorizations beyond type 1/2/3 of clones make sense (e.g.,
syntax, semantics, origins, risks, etc.)?

What is the statistical distribution of clone types in real-world
programs?

Which strategies of removal and avoidance, risks of removal, potential
damages, root causes, and other factors are associated with these
categories?



How Can We Detect Clones?

Granularity

functions

statements

Comparison of . . .

text

identifiers

tokens

syntax trees

control/data
dependencies

Techniques used

textual diff

dotplot

data mining

suffix tree

tree matching

graph matching

latent semantic
indexing

metric vector
comparison

hashing



Textual Detection

Comparison of. . .

identifiers and comments (information retrieval)

latent semantic indexing (Marcus and Maletic, 2001)

text

string comparison using fingerprints (Johnson, 1993, 1994)
line-based comparison via dot plots (Ducasse et al., 1999; Rieger, 2005)

27
124

67
12

95
...

...

42

42

a a b x y a a b z ...



How Can We Detect Clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees for parameterized strings per line (Baker,
1995)

$

x y a a b $

x y a a b $

$

x y a a b $

$

a b

b

a

b

x y a a b $

y a a b $

$

a a b x y a a b $



How Can We Detect Clones?

Comparison of . . .

tokens

type-1/-2 clones: suffix trees for parameterized strings per line (Baker,
1995)
type-3: concatenation of type-1/2 clones with gaps (Baker, 1995)
per token plus normalization of token stream (Kamiya et al., 2002)
lexical clones fully contained in syntactic unit:

lexical post-processing (Higo et al., 2002)
lexical pre-processing (Synytskyy et al., 2003; Cordy et al., 2004)



Incremental Token-Based Detection

clones

0

1

2

ID

=

ID

2

1

0 ID

=

ID

2

1

0 ID

:=

ID

2

1

0 while

ID

loop

2

1

0 ID

+

+

2

1

0 (

ID

)

2

1

0 ID

=

ID

0

1

2

ID

:=

−

2

1

0 while

ID

loop

2

1

0 ID

+

+

2

1

0 (

ID

)

clones

clones

V
e

rs
io

n
 1

V
e

rs
io

n
 2

– Göde (2008); Göde and Koschke (2009)



Evaluation (Göde and Koschke, 2009)

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S
ek

un
de

n

Revision

clones
iClones mit Matching

iClones ohne Matching



How Can We Detect Clones?

Comparison of . . .

metrics (Mayrand et al., 1996; Kontogiannis, 1997)

statements via data mining (Wahler et al., 2004; Li et al., 2004)



How Can We Detect Clones?

Comparison of . . .

syntax trees

hashing plus tree matching (Baxter et al., 1998)
tree matching plus dynamic programming (for file comparison) (Yang,
1991)
suffix trees for serialized syntax trees (Koschke et al., 2006)

seq

if

+

id id

=

id id

=

id call

id

if

id =

id id

=

id literal

if

id =

id id

=

id id



How Can We Detect Clones?

Comparison of Program Dependency Graphs (PDG) (Komondoor and
Horwitz, 2001; Krinke, 2001)

r ead ( n ) ; r ead (m) ;
i = 1 ; s = 0 ;
p roduc t = 1 ; p = 1 ;
sum = 0 ; f o r ( j = 1 ; j <= m; j = j + 1) {
wh i l e ( i <= n) { s = s + i ;

p roduc t = produc t ∗ i ; p = p ∗ i ;
sum = sum + i ; }
i = i + 1 ; w r i t e ( s ) ;

} w r i t e ( p ) ;
w r i t e ( sum ) ;
w r i t e ( p roduc t ) ;

set−use

control influence

p := p ** 2product := product ** 2

entry

j := 1

write(p)

read(m)

j <= m

write(s) s := s * 2

j := j + 1
p := 2

s := 1entry

i := 1

write(product)

read(n)

i <= n

write(sum) sum := sum * 2

i := i + 1
product := 2

sum := 1



How do Clone Detectors Compare?

Quantitative comparison of clone detectors by Bellon and Koschke (2002;
2007) for 4 Java and 4 C systems of 850 KLOC in total

Baker Baxter Kamiya Krinke Merlo Rieger

Basis Token AST Token PDG Metric Text
Clone type 1, 2 1, 2 1, 2, 3 3 1, 2, 3 1, 2, 3
Speed + + - + - - + + ?
RAM + - + + + + ?
Recall + - + - - +
Precision - + - - + -
Hidden 42 % 28 % 46 % 4 % 24 % 31 %

Later re-used and extended by Koschke et al. (2006)



Benchmarks

Open Issues

Limitations of current benchmarks

single oracle (until recently)

differences among different human raters for clone candidates
(Walenstein et al., 2003) when clones ought to be removed.

yes/no decision rather than degree of confidence

clones length measured as lines rather than tokens

insists on contiguous lines/tokens

clone pairs rather than clone classes

Benchmarking should become standard procedure of the community.
→ Bellon Benchmark is open source:
http://www.bauhaus-stuttgart.de/clones/
TBD: http://cloneval.sourceforge.net

http://www.bauhaus-stuttgart.de/clones/
http://cloneval.sourceforge.net


Why Do Clones Exist?

Ethnographic study by Kim et al. (2005):

Limitations of programming language designs may result in
unavoidable duplicates in a code.

Programmers often delay code restructuring until they have copied
and pasted several times.

Copy&paste dependencies often reflect important underlying design
decisions, such as crosscutting concerns.

Copied text is often reused as a template and is customized in the
pasted context.

Investigation of clones in large systems by Kapser and Godfrey (2006):
patterns of cloning:

forking

templating

customization



Open Issues

More empirical research needed. Other potential reasons:

insufficient information on global change impact

badly organized reuse process

questionable productivity measures (LOCs per day)

time pressure

educational deficiencies, ignorance, or shortsightedness

intellectual challenges (e.g., generics)

professionalism/end-user programming (e.g., HTML, Visual Basic)

development process, e.g., XP yields less clones? (Nickell and Smith,
2003)

organizational issues, e.g., distributed development organizations

→ fight the reasons, not just the symptoms



Beliefs About Effects of Cloning

Duplication is undesirable because of its well-known association
with bugs.

— Baker (1993)

In the long run the software grows in size and complexity and
requires more resources to maintain and enhance.

— Mayrand et al. (1996)

Detection and removal of such clones promises decreased
software maintenance costs of possibly the same magnitude.

— Baxter et al. (1998)



Beliefs About Effects of Cloning

During our case studies of large software systems, we found that
code cloning can often be used in a positive way.

— “Cloning considered harmful” considered harmful;
Kapser and Godfrey (2006)

In particular, refactoring may not always improve software with
respect to clones for two reasons. First, many code clones exist
in the system for only a short time; [. . . ] Second, many clones,
especially long-lived clones that have changed consistently with
other elements in the same group, are not easily refactorable due
to programming language limitations.

— Kim et al. (2005)



Beliefs in Beliefs About Effects of Cloning

Several recent studies contradict the common wisdom that
cloning constitutes a risky practice as found by Kim et al. (2005).
As shown in a paper by Kapser and Godfrey (2006), source code
clones are not necessarily to be considered harmful [. . . ]

— Aversano et al. (2007)



What Are the Effects of Cloning?

error rate

0−19 30−49 50−99 100−199 200−...

max. length of clones

– Monden et al. (2002)



What Are the Effects of Cloning?

Hypothesis by Chou et al. (2001):

If a function, file, or directory has one error, it is more likely that
is has others.

Additional observation in their study of Linux and OpenBSD:

can be observed most often when programmer ignorance of interface
or system rules combines with copy-and-paste

→ programmers believe that “working” code is correct code

→ copied code may be incorrect or placed into a context it was not
intended for



What Are the Effects of Cloning?

Faults due to type-2 clones with inconsistent renaming

— Li et al. (2006) for Linux kernel, FreeBSD, Apache, PostgreSQL.
Faults due to inconsistently changed type-3 clones (Juergens et al., 2009)



What Are the Effects of Cloning?

Effects on Changeability:

impact = percentage of co-changed methods

likelihood = frequency of method changes with clones
frequency of method changes

work = impact × likelihood

— Lozano and Wermelinger (2008)

→ no difference between cloned code and not cloned clone



Open Issues

More empirical research needed on relation of cloning to quality attributes
(defects, costs, performance, etc.).



How to Get Rid of Clones?

We know various techniques to remove clones:

automatic refactoring (Fanta and Rajlich, 1999)

functional abstraction (Komondoor and Horwitz, 2002)

macros (e.g., CloneDr by Semantic Designs)

design patterns (Balazinska et al., 1999, 2000)

generative programming (Jarzabek and Shubiao, 2003; Jarzabek and
Li, 2006)

Cordy (2003) argues that companies are afraid of the risks of removal.



How to Get Rid of Clones?

Open Issues

Empirical investigations of costs and benefits of clone removal are needed:

clone types and their relation to quality attributes

relevance ranking of clone types

suitable removal techniques with costs and risks

Tool support for removing type-3 clones?



How do Clones Evolve?

Cloning is common and steady practice in Linux kernel (Godfrey and
Tu, 2000, 2001; Antoniol et al., 2001, 2002)

Many code clones exist for only a short time (Kim et al., 2005)

Most type-1 clones live for a long time (Göde, 2009)

Many long-living clones that have changed consistently with other
elements in the same group cannot easily be avoided because of
limitations of the programming language (Kim et al., 2005)

Clones are changed consistently (Aversano et al., 2007)

Only half of the clones are changed consistently (Krinke, 2007)

Clones are more stable than non-cloned code (Krinke, 2008)



How do Clones Evolve?

Open Issues

How do clones evolve in industrial systems?

What does their evolution tell about the development organization
and process?

What affects cloning likelihood over time?

Why and how do programmers remove clones?

How we can track and manage clones over versions?

Can we use history information to improve clone detectors?



Summary of Own Research Results

Research surveys (Koschke, 2007, 2008b,a; Roy et al., 2009; Harder
and Koschke, 2008)

Clone detection for syntax trees in linear time (Koschke et al., 2006;
Falke et al., 2008)

Incremental clone detection (Göde and Koschke, 2009)

Tracing of clones across versions (Göde, 2009)

Learning algorithms for clone characteristics (Tiarks et al., 2009a,b)

Empirical classifications of type-3 clones (Tiarks et al., 2009a,b)

Empirical investigation of clone removal (Göde, 2010)



Final Quotes

Current software engineering tools have poor support for
identifying reusable code templates or maintaining them during
software evolution.

– Kim et al. (2005)

Cloning is a good strategy if you have the right tools in place.
Let programmers copy and adjust, and then let tools factor out
the differences with appropriate mechanisms.

– Ira Baxter, 2002



Further Reading and Resources

http://www.informatik.uni-bremen.de/st/lehredetails.
php?id=&lehre_id=44
Lecture on software reengineering (slides and video) including
techniques for clone detection

http://www.bauhaus-stuttgart.de
Bauhaus research project offering various clone detectors

http://www.bauhaus-stuttgart.de/clones/
Material on experiment to compare clone detectors

http://drops.dagstuhl.de/portals/index.php?semnr=06301
Dagstuhl seminar on clone detection, slides and proceedings

http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.informatik.uni-bremen.de/st/lehredetails.php?id=&lehre_id=44
http://www.bauhaus-stuttgart.de
http://www.bauhaus-stuttgart.de/clones/
http://drops.dagstuhl.de/portals/index.php?semnr=06301


G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones
evolution through time series. In International Conference on Software
Maintenance, pages 273–280. IEEE CS Press, 2001.

G. Antoniol, U. Villano, E. Merlo, and M.D. Penta. Analyzing cloning
evolution in the linux kernel. Information and Software Technology, 44
(13):755–765, 2002.

L. Aversano, L. Cerulo, and M. D. Penta. How clones are maintained: An
empirical study. In European Conference on Software Maintenance and
Reengineering. IEEE CS Press, 2007.

Brenda S. Baker. A theory of parameterized pattern matching: Algorithms
and applications (extended abstract). In Proc. 25th ACM Symposium
on Theory of Computing, pages 71–80, May 1993.

Brenda S. Baker. On finding duplication and near-duplication in large
software systems. In L. Wills, P. Newcomb, and E. Chikofsky, editors,
Second Working Conference on Reverse Engineering, pages 86–95, Los
Alamitos, California, July 1995. IEEE CS Press. URL
http://citeseer.nj.nec.com/baker95finding.html.

http://citeseer.nj.nec.com/baker95finding.html


M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Partial redesign of java software systems based on clone analysis. In
Working Conference on Reverse Engineering, pages 326–336. IEEE CS
Press, 1999.

Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and
Kostas Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Working Conference on Reverse
Engineering, pages 98–107. IEEE CS Press, October 2000.

Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone Detection Using Abstract Syntax Trees. In T. M.
Koshgoftaar and K. Bennett, editors, International Conference on
Software Maintenance, pages 368–378. IEEE Computer Society Press,
1998. ISBN 0-7803-5255-6, 0-8186-8779-7, 0-8186-8795-9.

Stefan Bellon. Vergleich von Techniken zur Erkennung duplizierten
Quellcodes. Diploma thesis, no. 1998, University of Stuttgart
(Germany), Institute for Software Technology, September 2002.



Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and evaluation of clone detection tools. IEEE
Transactions on Software Engineering, pages 577–591, September 2007.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R.
Engler. An empirical study of operating system errors. In Symposium on
Operating Systems Principles, pages 73–88, 2001. URL
citeseer.ist.psu.edu/chou01empirical.html.

James R. Cordy, Thomas R. Dean, and Nikita Synytskyy. Practical
language-independent detection of near-miss clones. In Conference of
the Centre for Advanced Studies on Collaborative research, pages 1–12.
IBM Press, 2004.

J.R. Cordy. Comprehending reality: Practical challenges to software
maintenance automation. In International Workshop on Program
Comprehension, pages 196–206. IEEE CS Press, 2003.

Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A Language
Independent Approach for Detecting Duplicated Code. In International
Conference on Software Maintenance, pages 109–118, 1999.

citeseer.ist.psu.edu/chou01empirical.html


Raimar Falke, Rainer Koschke, and Pierre Frenzel. Empirical evaluation of
clone detection using syntax suffix trees. Empirical Software
Engineering, 2008. accepted for publication.

Richard Fanta and Václav Rajlich. Removing clones from the code.
Journal on Software Maintenance and Evolution, 11(4):223–243,
July/Aug. 1999.

Nils Göde. Evolution of type-1 clones. In Workshop Source Code Analysis
and Manipulation, pages 77–86. IEEE Computer Society, 2009.

M. Godfrey and Q. Tu. Evolution in open source software: A case study.
In International Conference on Software Maintenance, pages 131–142.
IEEE CS Press, 2000.

M. Godfrey and Q. Tu. Growth, evolution and structural change in open
source software. In Workshop on Principles of Software Evolution,
September 2001.

Nils Göde. Incremental clone detection. Diplomarbeit, University of
Bremen, FB3, AG Softwaretechnik, September 2008. URL http://www.
informatik.uni-bremen.de/st/diplomdetails.php?da_id=11.

http://www.informatik.uni-bremen.de/st/diplomdetails.php?da_id=11
http://www.informatik.uni-bremen.de/st/diplomdetails.php?da_id=11


Nils Göde. Clone removal: Fact or fiction? In International Workshop on
Software Clones. ACM Press, 2010. submitted for publication.

Nils Göde and Rainer Koschke. Incremental clone detection. In European
Conference on Software Maintenance and Reengineering. IEEE CS
Press, 2009.

Jan Harder and Rainer Koschke. Empirische grundlagen für das
klonmanagement. In Rainer Gimnich, Uwe Kaiser, Jochen Quante, and
Andreas Winter, editors, Workshop Software Reengineering, pages
127–133. GI Lecture Notes for Informatics, 2008. ISBN
978-3-88579-220-8.

Yoshiki Higo, Yasushi Ueda, Toshihro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. On software maintenance process improvement based on
code clone analysis. In International Conference on Product Focused
Software Process Improvement, volume 2559 of Lecture Notes In
Computer Science, pages 185–197. Springer, 2002. ISBN
ISBN:3-540-00234-0.



S. Jarzabek and S. Li. Unifying clones with a generative programming
technique: a case study. Journal on Software Maintenance and
Evolution, 18(4):267–292, 2006.

S. Jarzabek and L. Shubiao. Eliminating redundancies with a ”composition
with adaptation” meta programming technique. In European Software
Engineering Conference, pages 237–246. IEEE CS Press, 2003.

J. Howard Johnson. Identifying redundancy in source code using
fingerprints. In Conference of the Centre for Advanced Studies on
Collaborative research, pages 171–183. IBM Press, 1993.

J. Howard Johnson. Substring matching for clone detection and change
tracking. In International Conference on Software Maintenance, pages
120–126. IEEE CS Press, 1994.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In International Conference on Software Engineering.
ACM Press, 2009.



Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A
Multi-Linguistic Token-based Code Clone Detection System for Large
Scale Source Code. IEEE Transactions on Software Engineering, 28(7):
654–670, 2002.

Cory Kapser and Michael W. Godfrey. ”clones considered harmful”
considered harmful. In Working Conference on Reverse Engineering,
pages 19–28, 2006.

Cory Kapser, Paul Anderson, Michael Godfrey, Rainer Koschke, Matthias
Rieger, Filip van Rysselberghe, and Peter Weißgerber. Subjectivity in
clone judgment: Can we ever agree? In R. Koschke, E. Merlo, and
A. Walenstein, editors, Dagstuhl Seminar ”Duplication, Redundancy,
and Similarity in Software” Proceedings 06301. Schloß Dagstuhl, 2006.
URL http://drops.dagstuhl.de/opus/volltexte/2007/970/pdf/
06301.SWM.Paper.970.pdf.

Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An
empirical study of code clone genealogies. In European Software
Engineering Conference and Foundations of Software Engineering
(ESEC/FSE, pages 187–196, 2005.

http://drops.dagstuhl.de/opus/volltexte/2007/970/pdf/06301.SWM.Paper.970.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/970/pdf/06301.SWM.Paper.970.pdf


R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In Proc. Int. Symposium on Static Analysis, pages 40–56,
July 2001.

Raghavan Komondoor and Susan Horwitz. Eliminating duplication in
source code via procedure extraction. Technical report 1461,
UW-Madison Dept. of Computer Sciences, December 2002.

K. Kontogiannis. Evaluation Experiments on the Detection of
Programming Patterns Using Software Metrics. In Working Conference
on Reverse Engineering, pages 44–53, 1997.

Rainer Koschke. Identifying and Removing Software Clones, pages 15–39.
Springer Verlag, 2008a. Editors: Serge Demeyer und Tom Mens.

Rainer Koschke. Survey of research on software clones. In Rainer Koschke,
Ettore Merlo, and Andrew Walenstein, editors, Duplication,
Redundancy, and Similarity in Software, number 06301 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2007. Dagstuhl. URL
http://drops.dagstuhl.de/opus/volltexte/2007/
970[dateofcitation:2007-01-01].

http://drops.dagstuhl.de/opus/volltexte/2007/970 [date of citation: 2007-01-01]
http://drops.dagstuhl.de/opus/volltexte/2007/970 [date of citation: 2007-01-01]


Rainer Koschke. Frontiers on software clone management. In International
Conference on Software Maintenance. IEEE CS Press, 2008b.

Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using
abstract syntax suffix trees. In Working Conference on Reverse
Engineering, pages 253–262. IEEE CS Press, 2006.

Jens Krinke. Is cloned code more stable than non-cloned code? In
Workshop Source Code Analysis and Manipulation, pages 57–66. IEEE
CS Press, 2008.

Jens Krinke. A study of consistent and inconsistent changes to code
clones. In Working Conference on Reverse Engineering. IEEE CS Press,
2007.

Jens Krinke. Identifying Similar Code with Program Dependence Graphs.
In Working Conference on Reverse Engineering, pages 301–309, 2001.

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding
copy-paste and related bugs in operating system code. In Operating
System Design and Implementation, pages 289–302, 2004.



Z Li, S Lu, S. Myagmar, and Y. Zhou. Copy-paste and related bugs in
large-scale software code. IEEE Transactions on Software Engineering,
32(3):176–192, March 2006.

Angela Lozano and Michel Wermelinger. Assessing the effect of clones on
changeability. In International Conference on Software Maintenance.
IEEE Press, 2008.

A. Marcus and J.I. Maletic. Identification of high-level concept clones in
source code. In International Conference on Automated Software
Engineering, pages 107–114, 2001.

J. Mayrand, C. Leblanc, and E.M. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In
International Conference on Software Maintenance, pages 244–253,
1996.

Thilo Mende, Rainer Koschke, and Felix Beckwermert. An evaluation of
code similarity identification for the grow-and-prune model. Journal on
Software Maintenance and Evolution, 2009. Accepted for publication.



A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software
quality analysis by code clones in industrial legacy software. In
IEEE Symposium on Software Metrics, pages 87–94, 2002.

Eric Nickell and Ian Smith. Extreme programming and software clones. In
Working Conference on Reverse Engineering. IEEE CS Press, 2003. URL
http://www.cacs.louisiana.edu/labs/SRL/iwdsc2003/
papers-pre/smith.pdf.

Matthias Rieger. Effective Clone Detection Without Language Barriers.
Dissertation, University of Bern, Switzerland, 2005.

Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming, 2009. doi:
doi:10.1016/j.scico.2009.02.007. accepted for publication.

Nikita Synytskyy, James R. Cordy, and Thomas Dean. Resolution of static
clones in dynamic web pages. In Workshop on Website Evolution, pages
49–56, 2003.

http://www.cacs.louisiana.edu/labs/SRL/iwdsc2003/papers-pre/smith.pdf
http://www.cacs.louisiana.edu/labs/SRL/iwdsc2003/papers-pre/smith.pdf


Rebecca Tiarks, Rainer Koschke, and Raimar Falke. An assessment of
type-3 clones as detected by state-of-the-art tools. In Workshop Source
Code Analysis and Manipulation. IEEE CS Press, 2009a.

Rebecca Tiarks, Rainer Koschke, and Raimar Falke. An extended
assessment of type-3 clones as detected by state-of-the-art tools.
Software Quality Journal, 2009b. submitted for publication.

V. Wahler, D. Seipel, Jürgen Wolff von Gudenberg, and G. Fischer. Clone
detection in source code by frequent itemset techniques. In Workshop
Source Code Analysis and Manipulation, pages 128–135, 2004.

Andrew Walenstein, Nitin Jyoti, Junwei Li, Yun Yang, and Arun Lakhotia.
Problems creating task-relevant clone detection reference data. In
Working Conference on Reverse Engineering, pages 285–294. IEEE CS
Press, 2003.

Wuu Yang. Identifying syntactic differences between two programs.
Software–Practice and Experience, 21(7):739–755, July 1991.


	Clones are there
	How to detect clones?
	Textual Detection
	Lexical Detection
	Metric-based Detection
	Syntax-based Detection
	PDG-based Detection
	Comparisons of Clone Detectors

	Why do they exist?
	What are the effects of cloning?
	How to get rid of clones?
	How do clones evolve?
	Final Quotes
	The End: Began the Clone War Has
	Resources
	References

